Skip to main content
Coppens Lab

Publications

SELECTED PUBLICATIONS ON TOXOPLASMA

  1. Coppens I, Sinai AP and Joiner KA (2000). Toxoplasma gondii exploits host LDL receptor-mediated endocytosis for cholesterol acquisition. J. Cell Biol. 149, 167-180. 
    ncbi.nlm.nih.gov/pubmed/10747095

  2. Coppens I and Joiner KA (2003). Host but not parasite cholesterol controls Toxoplasma cell entry by modulating organelle discharge. Mol. Biol. Cell 14, 3804-3820. 
    ncbi.nlm.nih.gov/pubmed/12972565

  3. Quittnat F, Nishikawa Y, Stedman TT, Voelker DR, Choi JY, Zahn M, Murphy R, Martin W, Yang M, Joiner KA and Coppens I (2004). On the biogenesis of lipid bodies in ancient eukaryotes: synthesis of triacylglycerols by a Toxoplasma DGAT1-related enzyme. Mol. Biochem. Parasitol. 138, 107-122. 
    ncbi.nlm.nih.gov/pubmed/15500922

  4. Nishikawa N, Quittnat F, Stedman TT, Voelker DR, Choi JY, Zahn M, Yang M, Joiner KA and Coppens I (2005). Host cell lipids control cholesteryl ester synthesis and storage in intracellular Toxoplasma. Cell. Microbiol. 7, 849-867. 
    ncbi.nlm.nih.gov/pubmed/15888087

  5. Sehgal A, Bettiol S, Wenk MR, Pypaert M, Kaasch A, Blader I, Joiner KA and Coppens I (2005). Peculiarities of host cholesterol transport to the unique intracellular compartment containing Toxoplasma gondii. Traffic 6, 1-17. 
    ncbi.nlm.nih.gov/pubmed/16262724

  6. Coppens I, Dunn JD, Romano JD, Pypaert M, Zhang H, Boothroyd JC and Joiner KA (2006). Toxoplasma sequesters host lysosomes in the vacuolar space. Cell 125, 261-274.
    ncbi.nlm.nih.gov/pubmed/16630815

  7. Coppens I (2006). Review: Contribution of host lipids to Toxoplasma pathogenesis. Cell. Microbiol. 8, 1-9. 
    ncbi.nlm.nih.gov/pubmed/16367861

  8. Romano JD, Bano N and Coppens I (2008). New host nuclear functions are not required for the modifications of the parasitophorous vacuole of Toxoplasma. Cell. Microbiol. 10, 465-476. 
    ncbi.nlm.nih.gov/pubmed/17970763

  9. Lige B, Jayabalasingham B, Zhang H, Pypaert M and Coppens I (2009). Role of an ancestral D-bifunctional protein containing two sterol-carrier protein-2 domains in lipid uptake and trafficking in Toxoplasma. Mol. Biol. Cell 20, 658-672. 
    ncbi.nlm.nih.gov/pubmed/19005217

  10. Ehrenman K, Sehgal A, Lige B, Stedman TT, Joiner KA and Coppens I (2010). Novel roles for ATP-binding cassette transporters in lipid redistribution in the human pathogen Toxoplasma. Mol. Microbiol. 76, 1232-1249. 
    ncbi.nlm.nih.gov/pubmed/20487267

  11. Lige B, Romano JD, Ratnam Bandaru VV, Sampels V, Haughey NJ and Coppens I (2011). Deficiency of a Niemann-Pick, type C1-related protein in Toxoplasma is associated with multiple lipidoses and increased pathogenicity. PLoS Pathog. 7, e1002410. ncbi.nlm.nih.gov/pubmed/22174676

  12. Romano JD, de Beaumont C, Carrasco JA, Ehrenman K, Bavoil PM and Coppens I (2013). Fierce competition between Toxoplasma and Chlamydia for host cell structures in dually infected cells. Eukaryot. Cell 12, 265-277. 
    ncbi.nlm.nih.gov/pubmed/23243063

  13. Lige B, Sampels V and Coppens I (2013). Characterization of a second sterol-esterifying enzyme in Toxoplasma highlights the importance of cholesterol storage pathways for the parasite. Mol. Microbiol. 87, 951-967. 
    ncbi.nlm.nih.gov/pubmed/2337423

  14. Romano JD, Sonda S, Bergbower E, Smith ME and Coppens I (2013). Toxoplasma gondii salvages sphingolipids from the host Golgi through the rerouting of selected Rab vesicles to the parasitophorous vacuole. Mol. Biol. Cell 24, 1974-1995. 
    ncbi.nlm.nih.gov/pubmed/23615442

  15. Romano JD, de Beaumont C, Carrasco JA, Ehrenman K, Bavoil PM and Coppens I (2013). A novel co-infection model with Toxoplasma and Chlamydia trachomatis highlights the importance of host cell manipulation for nutrient scavenging. Cell. Microbiol. 15, 619-646. 
    ncbi.nlm.nih.gov/pubmed/23107293

  16. Romano JD and Coppens I (2013). Review: Host Organelle Hijackers: a similar modus operandi for Toxoplasma gondii and Chlamydia trachomatis: co-infection model as a tool to investigate pathogenesis. Pathog. Dis. 69, 72-86. 
    ncbi.nlm.nih.gov/pubmed/23821471

  17. Coppens I (2014). Review: Exploitation of auxotrophies and metabolic defects in Toxoplasma as therapeutic approaches. Int. J. Parasitol. 44, 109-120. 
    ncbi.nlm.nih.gov/pubmed/24184910

  18. Pszenny V, Ehrenman K, Romano JD, Kennard A, Schultz A, Roos DS, Grigg ME, Carruthers VB and Coppens I (2016). A lipolytic Lecithin:Cholesterol Acyltransferase secreted by Toxoplasma facilitates parasite replication and egress. J. Biol. Chem. 291, 3725-3746. 
    ncbi.nlm.nih.gov/pubmed/26694607

  19. Nolan SJ, Romano JD and Coppens I (2017). Host lipid droplets: An important source of lipids salvaged by the intracellular parasite Toxoplasma gondii. PLoS Pathog. 13, e1006362. 
    ncbi.nlm.nih.gov/pubmed/28570716

  20. Romano JD, Nolan SJ, Porter C, Ehrenman K, Hartman EJ, Hsia RC and Coppens I (2017). The parasite Toxoplasma sequesters diverse Rab host vesicles within an intravacuolar network. J. Cell Biol. 216, 4235-4254. 
    ncbi.nlm.nih.gov/pubmed/29070609

  21. Coppens I and Romano JD (2018). Review: Hostile intruder: Toxoplasma holds host organelles captive. PLoS Pathog. 14, e1006893. 
    ncbi.nlm.nih.gov/pubmed/29596535

  22. Nolan SJ, Romano JD, Kline JT and Coppens I (2018). Novel approaches to kill Toxoplasma by exploiting the uncontrolled uptake of unsaturated fatty acids and vulnerability to lipid storage inhibition of the parasite.Antimicrob. Agents Chemother. 62, e00347-18.  
    ncbi.nlm.nih.gov/pubmed/30061287

  23. Asady B, Dick CF, Ehrenman K, Sahu T, Romano JD and Coppens I (2020). A single Na+-Pi cotransporter in Toxoplasma plays key roles in phosphate import and control of parasite osmoregulation. PLoS Pathog. 16, e1009067.

  24. Coppens I and Romano JD (2020). Sitting in the driver's seat: Manipulation of mammalian cell Rab GTPase functions by apicomplexan parasites. Biol Cell. 112, 187-195. https://pubmed.ncbi.nlm.nih.gov/32180234/

  25. Hartman EJ, Asady B, Romano JD and Coppens I (2022). The Rab11-family interacting proteins reveal selective interaction of mammalian recycling endosomes with the Toxoplasma parasitophorous vacuole in a Rab11- and Arf6-dependent manner. Mol. Biol. Cell 33, ar34. https://pubmed.ncbi.nlm.nih.gov/35274991/

  26. Romano JD, Mayoral J, Guevara RB, Rivera-Cuevas Y, Carruthers VB, Weiss LM and Coppens I (2023). Toxoplasma gondii scavenges mammalian host organelles through the usurpation of host ESCRT-III and Vps4A. J. Cell Sci. 136, jcs260159. https://pubmed.ncbi.nlm.nih.gov/36718630/

SELECTED PUBLICATIONS ON MALARIA PARASITE

  1. Vielemeyer O, McIntosh MT, Joiner KA and Coppens I (2004). Neutral lipid synthesis and storage in the intraerythrocytic stages of Plasmodium falciparum. Mol. Biochem. Parasitol. 135, 197-209. 
    ncbi.nlm.nih.gov/pubmed/15110461

  2. Coppens I and Vielemeyer O (2005). Review: Insights into unique physiological features of neutral lipids in Apicomplexa: From storage to potential mediation in parasite metabolic activities? Int. J. Parasitol. 35, 597-615. 
    ncbi.nlm.nih.gov/pubmed/15862574

  3. Bano N, Romano JD, Jayabalasingham B and Coppens I (2007). Cellular interactions of Plasmodium liver stage with its host mammalian cell. Int. J. Parasitol. 37, 1329-1341. 
    ncbi.nlm.nih.gov/pubmed/17537443

  4. Jayabalasingham B, Bano N and Coppens I (2010). Metamorphosis of malaria parasite in the liver is associated with organelle clearance. Cell Res. 20, 1043-1059. 
    ncbi.nlm.nih.gov/pubmed/20567259

  5. Labaied M, Jayabalasingham B, Bano N, Sandoval J, Guan G and Coppens I (2011). Plasmodium liver forms divert host cholesterol from the endogenous and exogenous pathways in hepatocytes. Cell. Microbiol. 13, 569-586. 
    ncbi.nlm.nih.gov/pubmed/21105984

  6. Coppens I (2011). Review: Metamorphoses of malaria: the role of autophagy in parasite differentiation. Essays Biochem. 51, 127-136. 
    ncbi.nlm.nih.gov/pubmed/22023446

  7. Jayabalasingham B, Voss C, Ehrenman K, Romano JD, Smith ME, Fidock DA, Bosch J and Coppens I (2014). Characterization of the Atg8-conjugation system in two Plasmodium species with special focus on the liver stage: Possible linkage between the apicoplastic and autophagic systems? Autophagy 10, 1-16. 
    ncbi.nlm.nih.gov/pubmed/24342964

  8. Voss C, Ehrenman K, Mlambo G, Mishra S, Kumar KA, Sacci JB Jr, Sinnis P and Coppens I (2016). Overexpression of Plasmodium berghei ATG8 by Liver Forms Leads to Cumulative Defects in Organelle Dynamics and to Generation of Noninfectious Merozoites. MBio 7, e00682-16. 
    ncbi.nlm.nih.gov/pubmed/27353755

  9. Promeneur D, Mlambo G, Agre P and Coppens I (2018). Aquaglyceroporin PbAQP is required for efficient progression through the liver stage of Plasmodium infection. Sci. Rep. 8, 655. 
    ncbi.nlm.nih.gov/pubmed/29330527

  10. Coppens I (2017). Review: How Toxoplasma and malaria parasites defy first, then exploit host autophagic and endocytic pathways for growth. Curr. Opin. Microbiol. 40, 32-39. ncbi.nlm.nih.gov/pubmed/29102900

  11. Sahu T, Gehrke EJ, Flores-Garcia Y, Mlambo G, Romano JD and Coppens I (2021) Chemoprophylaxis vaccination with a Plasmodium liver stage autophagy mutant affords enhanced and long-lasting protection. NPJ Vaccines6, 98. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355287/

SELECTED PUBLICATIONS ON OTHER APICOMPLEXA

  1. Ehrenman K, Wanyiri J, Bhat N, Ward HD and Coppens I (2013). Cryptosporidium parvum salvages LDL-derived cholesterol and micellar cholesterol into enterocytes. Cell. Microbiol. 15, 1182-1197. 
    ncbi.nlm.nih.gov/pubmed/23311949

  2. Nolan SJ, Romano JD, Luechtefeld T and Coppens I (2015). Neospora caninum recruits host cell structures to its parasitophorous vacuole and salvages lipids from organelles. Eukaryot. Cell 14, 454-473. 
    ncbi.nlm.nih.gov/pubmed/25750213

  3. Coppens I (2013). Targeting lipid biosynthesis and salvage in apicomplexan parasites for improved chemotherapies. Nat. Rev. Microbiol. 11, 823-835. ncbi.nlm.nih.gov/pubmed/24162026