

Space Medicine Introduction

ASA

Jade Spurgeon, MD, MPH Colonel, NJANG, SFS Director of Health and Medical Systems Office of the Chief Health and Medical Officer NASA Headquarters

Acknowledgement and Disclaimer

ASA

This presentation represents the views of the author and not necessarily NASA or USAF

What is new and different in Space Medicine?

Write This Down

Homeostasis

The human body will *always* try to reach homeostasis with its environment, including microgravity

Structure Training

Structure •Launch

Structure and Personal Space

Environmental

•Exposures

•Habitability

Figure 3. Bacterial Colonies (smooth)

Figure 4. Fungal Colonies (fuzzy)

Space Radiation

•Three main sources

- Galactic cosmic radiation (GCR)
 - **biggest threat to deep space missions**
- Trapped Radiation
- Solar particle events (SPE)

Radiation Exposure Career Limits – 600 mSv (60 rem)

	Typical Dose (rem)
Round-trip NY to London / Chest x-ray (1 film)	0.01
Natural background radiation per year	0.3
CT scan	3-10
Typical mission dose on ISS	10-15
Estimated dose for 3-yr Mars mission	100-150
Atomic bomb survivors	Up to 400
Human LD ₅₀ , no medical intervention	350-550
Human LD ₅₀ , with medical intervention	500-1000

Protection from Radiation

• Time, Distance, Shielding

Distance to the Moon ~ 238,854 miles
Average distance to Mars ~ 142 million miles (range 56 - 401 million miles)

26

Microgravity - Normal physiology, abnormal environment

- •Neurovestibular
- •Cardiovascular
- Musculoskeletal
- •SANS
- •CO₂

Microgravity •Neurovestibular

Microgravity •Neurovestibular

Microgravity •Cardiovascular

SA

UNCLASSIFIED Lujan and White (1995)

Microgravity • Musculoskeletal

Microgravity •Musculoskeletal Post-flight changes in bone density compared to preflight

- Size of craft will affect space available for exercise equipment
- Optimal design would allow for multifunctional equipment
- Does this provide sufficient medical benefit?

Microgravity

•SANS

Decreased near visual acuity, distant vision intact

Design and Mission Impacts

Space Environment

Microgravity

•CO₂

- Terrestrial partial pressure of CO₂: 0.39 mmHg
- •Hardware design based on original ISS Flight Rule limit for CO₂ of 7.6 mmHg
- Flight Rule limit revised to 5.3 mmHg in 2008
- Recently limit for 24-hr average was decreased to 3.0 mmHg
- Current evidence would suggest that an operational limit between 0.5 and 2.0 mmHg

Hazards of Mission

Mental

UNCLASSIFIED

Physical

Limited Resources

•Medical Training and Assets

Crew Health Stabilization

Physical Challenges

•EVA

Physical Challenges

EBULLISM

UNCLASSIFIED

NORMAL LUNG TISSUE

Physical Challenges

•Suits

US EMU – 4.3 psi

Russian Orlan – 5.8 psi

Physical Challenges

•Suits

Figure 3. Largest crater found on the PMIA handrail was 1.85 mm diameter with 0.33-mm-hig crater lips.

Figure 6. Mastracchio's left glove after STS-118 EVA #3.

Physical ChallengesPostflight

Mental Challenges

•Significant physical and psychosocial stressors

Data Extrapolation

Space is Hard

51

Summary

Space is hard...but super cool
Aerospace Medicine Specialists are uniquely positioned to understand the physiologic and operational challenges of extreme environments

