Aircrew Multi-Axis Vibration Exposures During Operation of the Blackhawk UH-60L Helicopter

Steven G. Chervak1
Suzanne D. Smith, PhD2
March, 2023

1Defense Centers for Public Health-Aberdeen
2Air Force Research Laboratory
The views expressed in this presentation are those of the author(s) and do not necessarily reflect the official policy of the Department of Defense or the U.S. Government.

The mention of any non-federal entity and/or its products is not to be construed or interpreted, in any manner, as federal endorsement of that non-federal entity or its products.
Background

- Military aircrews continue to report back discomfort, pain, and injury associated with flying rotary-wing aircraft.
- The Defense Centers for Public Health – Aberdeen (DCPH-A) and USAF are collaborating on a project to expand limited data on aircrew operational vibration exposure.
- The project is funded by the National Defense Center for Energy and Environment, Safety & Occupational Health Focus Group.
- It focuses on four platforms in addition to an initial study conducted on the HH-60M and UH-72.
- This presentation focuses on the UH-60L Blackhawk.
Objectives

Characterize and assess aircrew vibration exposure aboard the UH-60L.

- Investigate multi-axis acceleration spectra for targeted flight test conditions.
- Apply MIL-STD 1472/ACGIH (ISO 2631-1) to assess comfort and health risk.
- Conduct an aircrew survey regarding discomfort, vibration, and equipment.
- Document data in the AFRL Collaborative Biomechanics Data Network (CBDN).
Methods – Data Collection Unit

- Remote Vibration Environment Recorder (REVER)
- Portable and Battery-operated
- Four systems required for flight test

Photo by AFRL - Suzanne Smith
Methods - Seat Locations

<table>
<thead>
<tr>
<th>Station</th>
<th>Measurement Site</th>
<th>Sensor Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot (right cockpit seat)</td>
<td>Seat Base</td>
<td>Triaxial Accelerometer Pack</td>
</tr>
<tr>
<td></td>
<td>Seat Pan</td>
<td>Triaxial Acceleration Pad</td>
</tr>
<tr>
<td></td>
<td>Seat Back</td>
<td>Triaxial Acceleration Pad</td>
</tr>
<tr>
<td></td>
<td>Helmet</td>
<td>Six-Axis Helmet Mount</td>
</tr>
<tr>
<td>Crew Chief/Flight Engineer (mid cabin, side-facing right seat)</td>
<td>Floor beneath Seat</td>
<td>Triaxial Accelerometer Pack</td>
</tr>
<tr>
<td></td>
<td>Seat Pan</td>
<td>Triaxial Acceleration Pad</td>
</tr>
<tr>
<td></td>
<td>Seat Back</td>
<td>Triaxial Acceleration Pad</td>
</tr>
<tr>
<td>Crew Chief/Flight Engineer (mid cabin, side-facing left seat)</td>
<td>Floor beneath Seat</td>
<td>Triaxial Accelerometer Pack</td>
</tr>
<tr>
<td></td>
<td>Seat Pan</td>
<td>Triaxial Acceleration Pad</td>
</tr>
<tr>
<td></td>
<td>Seat Back</td>
<td>Triaxial Acceleration Pad</td>
</tr>
<tr>
<td>Crew Member (aft cabin, rear-facing right seat)</td>
<td>Floor beneath Seat</td>
<td>Triaxial Accelerometer Pack</td>
</tr>
<tr>
<td></td>
<td>Seat Pan</td>
<td>Triaxial Acceleration Pad</td>
</tr>
<tr>
<td>Crew Member (aft cabin, rear-facing left seat)</td>
<td>Floor beneath Seat</td>
<td>Triaxial Accelerometer Pack</td>
</tr>
<tr>
<td></td>
<td>Seat Pan</td>
<td>Triaxial Acceleration Pad</td>
</tr>
</tbody>
</table>
Methods - Vest and Helmet Setup

Photo by DCPH-A, Steven Chervak
Methods - Crew Seat Setup

Pilot Seat (Cockpit)

- Seat Back Acceleration Pad
- Seat Pan Acceleration Pad
- Seat Base Accelerometer Pack

Crew Chief Seat (Mid Cabin)

- Seat Back Acceleration Pad
- Seat Pan Acceleration Pad
- Floor Accelerometer Pack
- Small and Large Battery Packs
- Small DAU

Photo by DCPH-A, Steven Chervak
Methods - Rear Seat Setup

(Note: Actual measurements taken at rear-facing seats)

Photo by DCPH-A, Steven Chervak
Methods – Test Conditions

- **Flight Test Conditions**
 - Per Task
 - Multiple Records
- **Data Collection**
 - Acceleration time histories collected for 20 sec. for each condition upon trigger activation

Test Conditions

Flight Test Conditions

- Per Task
- Multiple Records

Data Collection

- Acceleration time histories collected for 20 sec. for each condition upon trigger activation

<table>
<thead>
<tr>
<th>Flight Test Conditions</th>
<th>Data Collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per Task</td>
<td>Accelerator</td>
</tr>
<tr>
<td>Multiple Records</td>
<td>Time Histories</td>
</tr>
</tbody>
</table>

Methods

- **Test Conditions**
 - **Per Task**
 - **Multiple Records**

Data Collection

- Acceleration time histories collected for 20 sec. for each condition upon trigger activation

FLIGHT TEST CARD

<table>
<thead>
<tr>
<th>AC/:</th>
<th>LOCATION/DATE:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PI:</th>
<th>CP:</th>
<th>CC:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other:

- Flight:

Test Conditions

- **Task**: Flight Test Conditions
 - **Per Task**
 - **Multiple Records**

Data Collection

- Acceleration time histories collected for 20 sec. for each condition upon trigger activation

<table>
<thead>
<tr>
<th>CONDITON</th>
<th>ALT (ft MSL)</th>
<th>A/S (KIAS)</th>
<th>COMMENTS (Wind, Day, Night, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TASK 1242 Before Starting Through Before Landing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Engine Idle</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B. Ground Flight 100%</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>C. Takeoff Normal</td>
<td>A/R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Takeoff Vertical</td>
<td>Record #</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Takeoff Minimum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Hover IGE*</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>G. Hovering Taxi IGE*</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>H. Hover IGE*</td>
<td>50-10K</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>I. Transverse Flow*</td>
<td>Record #</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Landing</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TASK 1062 Perform VMC Flight Maneuvers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. Climb</td>
<td><10K</td>
<td>50-50</td>
<td></td>
</tr>
<tr>
<td>L. Level Flight*</td>
<td><10K</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>M. Level Flight*</td>
<td><10K</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>N. Level Flight*</td>
<td><10K</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>N2. Level Flight*</td>
<td><10K</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>O. Sidewall Turn</td>
<td><10K</td>
<td>5120</td>
<td></td>
</tr>
<tr>
<td>P. Steep Rate Turn</td>
<td><10K</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Q. Descent</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. AVCS Off</td>
<td><10K</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>S. Normal Approach to IGE Hover*</td>
<td>>50</td>
<td>5120</td>
<td></td>
</tr>
<tr>
<td>T. Steep Approach to IGE Hover*</td>
<td>>50</td>
<td>5120</td>
<td></td>
</tr>
<tr>
<td>U. Normal Approach to IGE Hover*</td>
<td>5</td>
<td>5120</td>
<td></td>
</tr>
<tr>
<td>V. Steep Approach to IGE Hover*</td>
<td>5</td>
<td>5120</td>
<td></td>
</tr>
<tr>
<td>W. NOE*</td>
<td>0-25</td>
<td>5120</td>
<td></td>
</tr>
</tbody>
</table>

FLIGHT TEST CARD

<table>
<thead>
<tr>
<th>AC/:</th>
<th>LOCATION/DATE:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PI:</th>
<th>CP:</th>
<th>CC:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other:

- Flight: Flight Test Conditions

UNCLASSIFIED — Approved for public release; distribution unlimited.

Improving Health and Building Readiness. Anytime, Anywhere – Always

AFRL

UNCLASSIFIED — Approved for public release; distribution unlimited.
Methods – Data Processing

• Unweighted Acceleration Spectra (1–150 Hz)
 ▪ Identify the frequency location/magnitude of major peaks.
 ▪ PRF: Propeller Rotation Frequency
 ▪ BPF: Blade Passage Frequency

• Weighted Overall Accelerations (1–80 Hz, ISO 2631-1)
 ▪ Assess the comfort reaction and health risk.
 ▪ pVTV: point vibration total value (vector sum of overall accelerations for three directions at seat pan and seat back)
 ▪ oVTV: overall vibration total value (vector sum of pan and back pVTVs)
 ▪ Estimate allowable exposure duration associated with no health risk
Results – Unweighted Acceleration Spectra

![Graphs showing unweighted acceleration spectra for different flight conditions and configurations.](image-url)
Results – Comfort Reactions (ISO 2631-1)

- Overall Vibration Total Value (oVTV) (m/s² rms)

- Not Uncomfortable
- Little Uncomfortable
- Fairly Uncomfortable
- Uncomfortable
- Very Uncomfortable

- Tasks:
 - TASK 1024 Before Start - Before Leave Helo Checks
 - TASK 1026 NOE
 - TASK 1038 Perform Hovering Flight
 - TASK 1040 Perform VMC Takeoff
 - TASK 1052 Perform VMC Flight Maneuvers
 - TASK 1058 Perform VMC Approach

- Levels:
 - PILOT COCKPIT LEFT
 - CREW CHIEF MID LEFT
 - AIRCREW AFT LEFT

- Conditions:
 - LAND
 - TRANSVERSE FLOW
 - HOVER OGE
 - HOVER TAXI IGE
 - HOVER STAT IGE
 - TO MIN POWER
 - TO VERTICAL
 - TO NORMAL
 - ENGINE IDLE
 - GRD FLT 100%
 - NA OGE HOVER
 - SA OGE HOVER
 - NA IGE HOVER
 - SA IGE HOVER
 - LEVEL FLT 145°
 - LEVEL FLT 120°
 - LEVEL FLT 90°
 - CLIMB
 - DESCEND
 - LEVEL FLT 80°
 - NA OGE HOVER
 - SAGE HOVER
 - SA OGE HOVER
 - NAP OF EARTH

- Reactions:
 - Little Uncomfortable
 - Uncomfortable
 - Very Uncomfortable
Results – Unweighted/Weighted Overall Acceleration
Results – Blackhawk Comparison

[Graph showing acceleration levels and potential health risks for HH-60M and UH-60L pilots in different cockpits.]
Results – Blackhawk Comparison (Comfort)
Results – Aircraft Level Flight Comparison

<table>
<thead>
<tr>
<th>Aircraft Level Flight Comparison</th>
<th>Potential for Health Risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>UH-1H Huey</td>
<td>< 1 Hour Exposure</td>
</tr>
<tr>
<td>AH-1Z Super Cobra</td>
<td>1-2 Hour Exposure</td>
</tr>
<tr>
<td>CV-22 Osprey Airplane</td>
<td>2-4 Hours Exposure</td>
</tr>
<tr>
<td>CV-22 Osprey Conversion</td>
<td>4-8 Hours Exposure</td>
</tr>
<tr>
<td>UH-72 Lakota</td>
<td>> 8 Hours Exposure</td>
</tr>
<tr>
<td>HH-60M Medevac</td>
<td></td>
</tr>
<tr>
<td>CV-22 Osprey Airplane</td>
<td></td>
</tr>
<tr>
<td>UH-60L Blackhawk</td>
<td></td>
</tr>
</tbody>
</table>

POINT VIBRATION TOTAL VALUE (pVTV)

LEVEL FLIGHT (ms⁻² rms)

- Pilot
- Pilot A Front
- Pilot A Back
- Pilot B Front
- Pilot
- Flight Engineer
- Crew Chief
- Pilot
- Flight Engineer
- Crew Chief
- Pilot
- Crew Chief
- Medic
- Pilot
- Pilot Left
- Crew Chief Left
- Aircrew Left

Potential for Health Risks:

- < 1 Hour Exposure
- 1-2 Hour Exposure
- 2-4 Hours Exposure
- 4-8 Hours Exposure
- > 8 Hours Exposure
Conclusions

• Aircrew are exposed to significant higher-frequency multi-axis vibration (above 10 Hz).
• The assessment shows aircrew comfort and potential for health risks can occur in as little as 1-2 hours due to exposures over current recognized threshold limits (ACGIH, MIL-STD).
• Active aircraft vibration mitigation technologies can sufficiently reduce this threat.
• The mechanism(s) by which vibration may affect aircrew physiology and health risk are still not clear and further research is needed to improving mitigation concepts.
• The vibration data collected will be used to establish appropriate criteria for developing effective mitigation concepts through modeling.
Acknowledgement

DCPH-A and AFRL would like to thank the NDCEE for their support.