Skip to main content

Welcome to our brand new website. We’re still fine-tuning things. If you experience any issues or would like to provide feedback, please contact us.

Coppens Lab

Publications

SELECTED PUBLICATIONS ON TOXOPLASMA

  1. Coppens I, Sinai AP and Joiner KA (2000). Toxoplasma gondii exploits host LDL receptor-mediated endocytosis for cholesterol acquisition. J. Cell Biol. 149, 167-180. 
    ncbi.nlm.nih.gov/pubmed/10747095

  2. Coppens I and Joiner KA (2003). Host but not parasite cholesterol controls Toxoplasma cell entry by modulating organelle discharge. Mol. Biol. Cell 14, 3804-3820. 
    ncbi.nlm.nih.gov/pubmed/12972565

  3. Quittnat F, Nishikawa Y, Stedman TT, Voelker DR, Choi JY, Zahn M, Murphy R, Martin W, Yang M, Joiner KA and Coppens I (2004). On the biogenesis of lipid bodies in ancient eukaryotes: synthesis of triacylglycerols by a Toxoplasma DGAT1-related enzyme. Mol. Biochem. Parasitol. 138, 107-122. 
    ncbi.nlm.nih.gov/pubmed/15500922

  4. Nishikawa N, Quittnat F, Stedman TT, Voelker DR, Choi JY, Zahn M, Yang M, Joiner KA and Coppens I (2005). Host cell lipids control cholesteryl ester synthesis and storage in intracellular Toxoplasma. Cell. Microbiol. 7, 849-867. 
    ncbi.nlm.nih.gov/pubmed/15888087

  5. Sehgal A, Bettiol S, Wenk MR, Pypaert M, Kaasch A, Blader I, Joiner KA and Coppens I (2005). Peculiarities of host cholesterol transport to the unique intracellular compartment containing Toxoplasma gondii. Traffic 6, 1-17. 
    ncbi.nlm.nih.gov/pubmed/16262724

  6. Coppens I, Dunn JD, Romano JD, Pypaert M, Zhang H, Boothroyd JC and Joiner KA (2006). Toxoplasma sequesters host lysosomes in the vacuolar space. Cell 125, 261-274.
    ncbi.nlm.nih.gov/pubmed/16630815

  7. Coppens I (2006). Review: Contribution of host lipids to Toxoplasma pathogenesis. Cell. Microbiol. 8, 1-9. 
    ncbi.nlm.nih.gov/pubmed/16367861

  8. Romano JD, Bano N and Coppens I (2008). New host nuclear functions are not required for the modifications of the parasitophorous vacuole of Toxoplasma. Cell. Microbiol. 10, 465-476. 
    ncbi.nlm.nih.gov/pubmed/17970763

  9. Lige B, Jayabalasingham B, Zhang H, Pypaert M and Coppens I (2009). Role of an ancestral D-bifunctional protein containing two sterol-carrier protein-2 domains in lipid uptake and trafficking in Toxoplasma. Mol. Biol. Cell 20, 658-672. 
    ncbi.nlm.nih.gov/pubmed/19005217

  10. Ehrenman K, Sehgal A, Lige B, Stedman TT, Joiner KA and Coppens I (2010). Novel roles for ATP-binding cassette transporters in lipid redistribution in the human pathogen Toxoplasma. Mol. Microbiol. 76, 1232-1249. 
    ncbi.nlm.nih.gov/pubmed/20487267

  11. Lige B, Romano JD, Ratnam Bandaru VV, Sampels V, Haughey NJ and Coppens I (2011). Deficiency of a Niemann-Pick, type C1-related protein in Toxoplasma is associated with multiple lipidoses and increased pathogenicity. PLoS Pathog. 7, e1002410. 
    ncbi.nlm.nih.gov/pubmed/22174676

  12. Romano JD, de Beaumont C, Carrasco JA, Ehrenman K, Bavoil PM and Coppens I (2013). Fierce competition between Toxoplasma and Chlamydia for host cell structures in dually infected cells. Eukaryot. Cell 12, 265-277. 
    ncbi.nlm.nih.gov/pubmed/23243063

  13. Lige B, Sampels V and Coppens I (2013). Characterization of a second sterol-esterifying enzyme in Toxoplasma highlights the importance of cholesterol storage pathways for the parasite. Mol. Microbiol. 87, 951-967. 
    ncbi.nlm.nih.gov/pubmed/2337423

  14. Romano JD, Sonda S, Bergbower E, Smith ME and Coppens I (2013). Toxoplasma gondii salvages sphingolipids from the host Golgi through the rerouting of selected Rab vesicles to the parasitophorous vacuole. Mol. Biol. Cell 24, 1974-1995. 
    ncbi.nlm.nih.gov/pubmed/23615442

  15. Romano JD, de Beaumont C, Carrasco JA, Ehrenman K, Bavoil PM and Coppens I (2013). A novel co-infection model with Toxoplasma and Chlamydia trachomatis highlights the importance of host cell manipulation for nutrient scavenging. Cell. Microbiol. 15, 619-646. 
    ncbi.nlm.nih.gov/pubmed/23107293

  16. Romano JD and Coppens I (2013). Review: Host Organelle Hijackers: a similar modus operandi for Toxoplasma gondii and Chlamydia trachomatis: co-infection model as a tool to investigate pathogenesis. Pathog. Dis. 69, 72-86. 
    ncbi.nlm.nih.gov/pubmed/23821471

  17. Coppens I (2014). Review: Exploitation of auxotrophies and metabolic defects in Toxoplasma as therapeutic approaches. Int. J. Parasitol. 44, 109-120. 
    ncbi.nlm.nih.gov/pubmed/24184910

  18. Pszenny V, Ehrenman K, Romano JD, Kennard A, Schultz A, Roos DS, Grigg ME, Carruthers VB and Coppens I (2016). A lipolytic Lecithin:Cholesterol Acyltransferase secreted by Toxoplasma facilitates parasite replication and egress. J. Biol. Chem. 291, 3725-3746. 
    ncbi.nlm.nih.gov/pubmed/26694607

  19. Nolan SJ, Romano JD and Coppens I (2017). Host lipid droplets: An important source of lipids salvaged by the intracellular parasite Toxoplasma gondii. PLoS Pathog. 13, e1006362. 
    ncbi.nlm.nih.gov/pubmed/28570716

  20. Romano JD, Nolan SJ, Porter C, Ehrenman K, Hartman EJ, Hsia RC and Coppens I (2017). The parasite Toxoplasma sequesters diverse Rab host vesicles within an intravacuolar network. J. Cell Biol. 216, 4235-4254. 
    ncbi.nlm.nih.gov/pubmed/29070609

  21. Coppens I and Romano JD (2018). Review: Hostile intruder: Toxoplasma holds host organelles captive. PLoS Pathog. 14, e1006893. 
    ncbi.nlm.nih.gov/pubmed/29596535

  22. Nolan SJ, Romano JD, Kline JT and Coppens I (2018). Novel approaches to kill Toxoplasma by exploiting the uncontrolled uptake of unsaturated fatty acids and vulnerability to lipid storage inhibition of the parasite.Antimicrob. Agents Chemother. 62, e00347-18.  
    ncbi.nlm.nih.gov/pubmed/30061287

  23. Asady B, Dick CF, Ehrenman K, Sahu T, Romano JD and Coppens I (2020). A single Na+-Pi cotransporter in Toxoplasma plays key roles in phosphate import and control of parasite osmoregulation. PLoS Pathog. 16, e1009067.

SELECTED PUBLICATIONS ON MALARIA PARASITE

  1. Vielemeyer O, McIntosh MT, Joiner KA and Coppens I (2004). Neutral lipid synthesis and storage in the intraerythrocytic stages of Plasmodium falciparum. Mol. Biochem. Parasitol. 135, 197-209. 
    ncbi.nlm.nih.gov/pubmed/15110461

  2. Coppens I and Vielemeyer O (2005). Review: Insights into unique physiological features of neutral lipids in Apicomplexa: From storage to potential mediation in parasite metabolic activities? Int. J. Parasitol. 35, 597-615. 
    ncbi.nlm.nih.gov/pubmed/15862574

  3. Bano N, Romano JD, Jayabalasingham B and Coppens I (2007). Cellular interactions of Plasmodium liver stage with its host mammalian cell. Int. J. Parasitol. 37, 1329-1341. 
    ncbi.nlm.nih.gov/pubmed/17537443

  4. Jayabalasingham B, Bano N and Coppens I (2010). Metamorphosis of malaria parasite in the liver is associated with organelle clearance. Cell Res. 20, 1043-1059. 
    ncbi.nlm.nih.gov/pubmed/20567259

  5. Labaied M, Jayabalasingham B, Bano N, Sandoval J, Guan G and Coppens I (2011). Plasmodium liver forms divert host cholesterol from the endogenous and exogenous pathways in hepatocytes. Cell. Microbiol. 13, 569-586. 
    ncbi.nlm.nih.gov/pubmed/21105984

  6. Coppens I (2011). Review: Metamorphoses of malaria: the role of autophagy in parasite differentiation. Essays Biochem. 51, 127-136. 
    ncbi.nlm.nih.gov/pubmed/22023446

  7. Jayabalasingham B, Voss C, Ehrenman K, Romano JD, Smith ME, Fidock DA, Bosch J and Coppens I (2014). Characterization of the Atg8-conjugation system in two Plasmodium species with special focus on the liver stage: Possible linkage between the apicoplastic and autophagic systems? Autophagy 10, 1-16. 
    ncbi.nlm.nih.gov/pubmed/24342964

  8. Voss C, Ehrenman K, Mlambo G, Mishra S, Kumar KA, Sacci JB Jr, Sinnis P and Coppens I (2016). Overexpression of Plasmodium berghei ATG8 by Liver Forms Leads to Cumulative Defects in Organelle Dynamics and to Generation of Noninfectious Merozoites. MBio 7, e00682-16. 
    ncbi.nlm.nih.gov/pubmed/27353755

  9. Promeneur D, Mlambo G, Agre P and Coppens I (2018). Aquaglyceroporin PbAQP is required for efficient progression through the liver stage of Plasmodium infection. Sci. Rep. 8, 655. 
    ncbi.nlm.nih.gov/pubmed/29330527

  10. Coppens I (2017). Review: How Toxoplasma and malaria parasites defy first, then exploit host autophagic and endocytic pathways for growth. Curr. Opin. Microbiol. 40, 32-39. 
    ncbi.nlm.nih.gov/pubmed/29102900

SELECTED PUBLICATIONS ON OTHER APICOMPLEXA

  1. Ehrenman K, Wanyiri J, Bhat N, Ward HD and Coppens I (2013). Cryptosporidium parvum salvages LDL-derived cholesterol and micellar cholesterol into enterocytes. Cell. Microbiol. 15, 1182-1197. 
    ncbi.nlm.nih.gov/pubmed/23311949

  2. Nolan SJ, Romano JD, Luechtefeld T and Coppens I (2015). Neospora caninum recruits host cell structures to its parasitophorous vacuole and salvages lipids from organelles. Eukaryot. Cell 14, 454-473. 
    ncbi.nlm.nih.gov/pubmed/25750213

  3. Coppens I (2013). Targeting lipid biosynthesis and salvage in apicomplexan parasites for improved chemotherapies. Nat. Rev. Microbiol. 11, 823-835. 
    ncbi.nlm.nih.gov/pubmed/24162026